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ABSTRACT 
In this study, fully-developed flow parallel to ordered fibrous 
structures is investigated analytically. The considered fibrous 
media are made up of in-line (square), staggered, and 
hexagonal arrays of cylinders. Starting from the general 
solution of Poisson’s equation, compact analytical solutions are 
proposed for both velocity distribution and permeability of the 
considered structures. In addition, independent numerical 
simulations are performed for the considered patterns over the 
entire range of porosity and the results are compared with the 
proposed solutions. The developed models are successfully 
verified through comparison with existing experimental data, 
collected by others, and the present numerical results over a 
wide range of porosity. The results show that for the ordered 
arrangements with high porosity, the parallel permeability is 
independent of the microstructure geometry; on the other hand, 
for lower porosities the hexagonal arrays results in lower 
pressure drop, as expected. 

NOMENCLATURE 
d = Fiber diameter, m  

K = Viscous permeability, 2m  
*K = Dimensionless viscous permeability, 2* / dKK =  

P = Pressure, Pa   
Q = Volumetric flow rate, sm /3  

0r = Fiber radius, m  

S = Distance between adjacent fibers, m  

DU = Volume-averaged superficial velocity, sm /  

w = Velocity in z -direction, sm /  

Greek symbols 
ε = Porosity 
μ = Fluid viscosity, 2/ msN  

ϕ = Solid volume fraction, εϕ −=1  

ε = Porosity 

1 INTRODUCTION 
Transport phenomena in porous media have been the focus of 
numerous studies since the 1850s, which indicates the 
importance of this topic. Most of these studies refer to granular 
materials with low and medium porosities, 0.3 < ε  < 0.6. 
Comprehensive reviews of the pertinent literature are presented 
by Kaviany [1], Nield and Bejan [2], and Dullien [3]. Fibrous 
structures, made up of cylindrical-like particles, can form stable 
geometries with high porosity, up to 0.99 [4]. Moreover, these 
fibrous structures feature low-weight, high surface-to-volume 
ratios, and high heat transfer coefficients [4]. Fibrous porous 
materials have applications in several engineering areas 
including: filtration and separation of particles [5], composite 
fabrication [6], heat exchangers [4,7], and fuel cells [8]. 
Experimental observations have shown that a linear relationship 
exists between the volume-averaged superficial fluid velocity 
and the pressure gradient; this is called Darcy’s law [1]:  

DU
K

P μ
=∇−  (1) 

where μ  is the fluid viscosity and K  is the viscous 
permeability of the medium. Viscous permeability can be 
interpreted as the ability of the porous matrix to pass fluids. 
Macroscopic transport properties such as permeability and heat 
transfer coefficient are functions of geometrical features of the 
porous medium; thus, determination of exact transport 
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properties for real fibrous materials with random structures is 
very complex and in many cases not possible. However, several 
researchers have argued that the parallel permeability of 
unidirectional fibers can provide an upper bound for the 
permeability of real structures [9]. Moreover, a blend of normal 
and parallel permeabilities of unidirectional arrangements 
provides an estimate for the permeability of random fibrous 
media, e.g., Jackson and James [10] and Happel and Brenner 
[11]. Therefore, a detailed analysis of parallel permeability of 
unidirectional fibers is valuable. 
Happel [12] and Sparrow and Loeffler [13] studied parallel 
permeability for unidirectional cylinders for heat exchanger 
application. Happel [12] assumed a circular unit cell with a 
single cylinder located at its center and applied zero-shear 
stress boundary condition on the outer surface of the control 
volume; this method is called the limited boundary layer 
approach. However, the model of [12] cannot accurately predict 
the parallel permeability for lower porosities where neighboring 
fibers play an important role [10].  
Sparrow and Loeffler [13], on the other hand, considered both 
square and staggered arrangements of monodispersed fibers. 
They used the general solution of Poisson’s equation in the 
cylindrical coordinate system and applied the boundary 
conditions at finite discrete points. The evaluated coefficients in 
their series solution were functions of porosity; therefore, they 
proposed an approximate compact relationship which was 
claimed to be accurate only for highly porous structures, ε > 
0.9 [13]. The approximate model of [13], for staggered 
arrangement, was identical to the model of Happel [12]. 
Velocity distribution was also reported in a tabular form, which 
is not easy-to-use. Later, Drummond and Tahir [14] performed 
a comprehensive analytical investigation of normal and parallel 
flows for various ordered arrays of fibers. For parallel flow, 
they started from the general solution of Poisson’s equation in 
the form of a series. Drummond and Tahir [14] claimed that 
their singularity method was more accurate than the approach 
of Sparrow and Loeffler [13]. 
However, their models [14] for normal flow were not accurate 
[15]. Drummond and Tahir [14] did not report explicit 
relationships for the velocity distribution. Observing the 
similarity between the final relationship for the parallel 
permeability proposed by Happel [12] and those derived in 
their analyses for different fiber arrangements, Drummond and 
Tahir [14] concluded that any correlation proposed for the 
parallel permeability should have the following form: 
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where ϕ  is the solid volume fraction, d is the fibers diameter, 
and C is a constant that should be determined empirically. For 
C=1.5, Eq. (2) yields the model of Happel [12] and Sparrow 

and Loeffler [13]. Recently, Tamayol and Bahrami [16] 
assumed a parabolic velocity distribution and using an integral 
technique determined the normal and parallel permeabilities of 
square arrays of cylinders. Their model for normal flow was 
able to capture the trend of experimental data from several 
sources. The proposed relationship for parallel permeability 
was in good agreement with the model of Happel [12] in the 
upper limit of porosity and for the lower limit it was in 
agreement with experimental data. In a subsequent work, 
Tamayol and Bahrami [17] performed a comprehensive 
numerical study and reported the normal and the parallel 
permeability of square fiber arrangements over a wide range of 
porosity. Comparison of the numerical results with their 
analytical relationship showed that although their model could 
capture the trends of numerical results, the differences were 
significant in the medium range of porosity 0.5 < ε  < 0.8 [17]. 
Comparing the numerical velocity distribution with the 
parabolic profile, Tamayol and Bahrami [17] argued that the 
assumption of parabolic velocity distribution was not accurate. 
Therefore, the objectives of the present study are: 
1) To develop accurate velocity profiles for square and 
staggered arrays of fibers.  
2) To find compact and accurate models for parallel 
permeability in unidirectional fibrous matrices. 
In this study, porous material is assumed to be periodic and is 
represented by a 3-dimensional unit cell. Following [13], 
governing equations are solved analytically and velocity 
distributions are reported for square, staggered, and hexagonal 
arrays of fibers. Moreover, employing an integral technique, 
compact models are developed for parallel permeability. Due to 
a lack of experimental and numerical data for parallel flow in 
unidirectional arrangements, numerical simulations are also 
performed using Fluent software [18], over the entire range of 
porosity to validate the models.  

2 GEOMETRICAL MODELING 
Following the approach used successfully in several 
applications such as spherical packed beds [19], gas diffusion 
layer of fuel cells [20], and fibrous media [21-27] a 
representative unit cell is considered to analyze the geometry of 
the fibrous media. The unit cell (or basic cell) is the smallest 
volume which can represent characteristics of the whole 
microstructure. In the following sub-sections, various ordered 
arrangements, shown in Fig. 1, will be investigated.  
According to symmetry lines, only the selected portions of the 
unit cells are considered in the analysis. Based on geometry, the 
solid volume fraction and porosity of square and staggered 
arrays are: 
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Figure 1: Unit cell for a) square, b) staggered, and c) hexagonal arrangements. 
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Therefore, the minimum possible values of ε  for square, 
staggered, and hexagonal arrangements with no overlapping are 
0.215, 0.094, and 0.395, respectively. 

3 VELOCITY DISTRIBUTION 
Laminar, steady, and fully-developed flow parallel to square, 
staggered, hexagonal fiber arrangements, shown in Fig. 1, is 
investigated. Darcy’s relationship, Eq. (1), holds when the flow 
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passing through pores is in creeping regime, i.e., inertial effects 
are negligible [1]. However, the present models are valid for 
laminar fully-developed flows with higher Reynolds numbers. 
Applying the abovementioned assumptions, the conservation of 
linear momentum leads to Poisson’s equation: 
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where w is the component of velocity in the z-direction. The 
general solution of this equation is [28]: 
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For square arrangement, symmetry lines are located at θ = 0 
and θ = p/4. The first condition results in kF = 0 and the second 
condition holds when k = 4, 8, 12, … . The no-slip boundary 
condition on the solid walls leads to: 
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Total frictional force exerted on the fluid by solid rods must be 
balanced by the net pressure force acting over the entire cross-
section of the basic cell: 
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Using this integral, the constant B  can be found: 
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Consequently, the velocity distribution becomes: 

( )

2/
,

4

4cos
2

4
1ln2

2
*

1

44
4

24

2

2

2
*

]

[

d
r

dz
dPd

ww

k
dG

d
Sw

k

kk
k

k
k

=

⎟
⎠
⎞

⎜
⎝
⎛−

=

−

+
−

−=

∑
∞

=

−
−

η

μ

θηη

ηη
π

 (9) 

The last constant, kG , is found by applying the symmetry 

condition on the border where ( )θcos2/Sr = . Therefore, one 
can write: 
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where: 
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Sparrow and Loeffler [13] applied Eq. (10) at a finite number of 
points along the boundary and solved the resulting set of linear 
equations to determine the unknown coefficients, i.e., kg . The 
same approach is followed here and the calculated coefficients 
for several porosities are listed in Table 1. The listed values are 
in agreement with the values reported by Sparrow and Loeffler 
[13].  
The triangular unit cell section for the staggered fiber 
arrangements is shown in Fig 1b. The symmetry boundaries are 
located at θ = 0 and θ = p/6. The governing equation and its 
general solution are still Eqs. (4) and (5). Following the same 
procedure used in the previous sub-section and applying 
symmetry boundary conditions leads to: 
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The unknown coefficients are evaluated with the same 
approach used for square arrangements and the results as listed 
in Table 1.  
Following the same approach and considering the location of 
the symmetry lines for hexagonal arrays at θ = 0 and θ = p/3, 
the velocity distribution can be found as: 
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The unknown coefficients are listed in Table 1. From the listed 
coefficients in Table 1 and the form of the series solutions in 
Eqs. (9), (12) and (13), it is expected that truncating the series 
from the second term, does not affect the velocity distributions 
significantly. Our analysis also showed that substituting 1g  
with an average value has a negligible impact on the predicted 
results (less than 4 percent). Therefore, 1g  is replaced by          
-0.107, -0.0437, and -0.246 for square, staggered, and 
hexagonal arrangements, respectively. Hence, the velocity 
distribution will be: 
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Table 1: Calculated coefficients in velocity distribution. 

Square arrangement 

dS /  ε  1g  2g  3g  4g  5g  

4.0 0.95 -0.1253 -0.0106 -0.0006 0 0 

2.0 0.80 -0.1250 -0.0105 -0.0006 0 0 

1.5 0.65 -0.1225 -0.0091 -0.0002 0 0 

1.2 0.45 -0.1104 -0.0024 -0.0015 0.0003 0 

1.1 0.35 -0.0987 0.0036 0.0029 0.0005 0 

1.05 0.29 -0.0904 0.0073 0.0032 0.0002 0 

Staggered arrangement 
dS /  ε  1g  2g  3g  4g  5g  

4.0 0.94 -0.0505 -0.0008 0.0000 0 0 

2.0 0.77 -0. 0505 -0.0008 0.0000 0 0 

1.5 0.60 -0. 0502 -0.0007 0.0001 0 0 

1.2 0.37 -0. 0469 0.0007 0.0002 0.0000 0 

1.1 0.25 -0.0416 0.0028 0.0004 0.0000 0 

1.05 0.18 -0.0368 0.0043 0.0003 -0.0001 0.0000 

Hexagonal arrangement 

dS /  ε  1g  2g  3g  4g  5g  
4.0 0.96 -0.2850 -0.0365 -0.0048 -0.0006 -0.0001 
2.0 0.85 -0.2827 -0.0350 -0.0043 -0.0005 0.0000 
1.5 0.73 -0.2728 -0.0286 -0.0019 0.0002 0.0001 
1.2 0.58 -0.2433 -0.0096 0.0053 0.0021 0.0006 
1.1 0.50 -0.2216 0.0038 0.0093 0.0029 0.0004 

1.05 0.45 -0.2076 0.0116 0.0103 0.0027 -0.0003 
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3.1 NUMERICAL SIMULATION 
Due to the lack of experimental and numerical data for parallel 
flow through ordered arrangements of fibers [15], a numerical 
study is performed using Fluent software [18] to verify the 
solution. To find fully-developed velocity profiles, the length of 
the cylinders is large enough to result in a fully developed 

velocity profile. Structured grids are generated using Gambit 
[18], the preprocessor in the Fluent [18] package; numerical 
grid aspect ratios are kept in the range of 1-5. Fluent [18] is a 
finite volume based code and second order upwind scheme is 
selected to discretize the governing equations. SIMPLE 
algorithm is employed for pressure-velocity coupling. The inlet 
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velocity of the media is assumed to be uniform. Constant 
pressure boundary condition is applied on the computational 
domain outlet. The symmetry boundary condition is applied on 
the side borders of the unit cells. Grid independence is tested 
for different cases and the size of computational grids used for 
each geometry is selected such that the maximum difference in 
the predicted values for pressure gradient is less than 2%. The 
convergence criterion, maximum relative error in the value of 
dependent variables between two successive iterations, is set at 
10-6. 
To verify the proposed velocity distribution for the square 
arrangements, numerical and analytical velocity profiles are 
plotted in Figs. 2-4 for square and staggered arrangements with 
different porosities. The velocity magnitudes are 

nondimensionalized using the volume averaged velocity, DU . 
These figures indicate that Eq. (14) accurately predicts the 
velocity distribution in the considered geometries.  

4) PERMEABILITY 
Velocity distributions are developed analytically for parallel 
flow through square, staggered, and hexagonal arrays of 
cylinders in previous sections. Moreover, the flow-fields are 
solved numerically to verify the theoretical results. The 
volumetric flow rate that passes the medium is found by 
integrating Eq. (14) over the pore area. Substituting for dzdP /  
from Darcy’s equation and using the solid volume fraction 
definitions for square arrangement of fibers, the non-
dimensional permeability is simplified as: 
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Figure 2: Present velocity distributions for a square arrangement with ε = 0.45, a) analytical (Eq. (14)) and b) numerical. 
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Figure 3: Present velocity distributions for a square arrangement with ε = 0.9, a) analytical (Eq. (14)) and b) numerical. 
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Figure 4: Present velocity distributions for staggered arrangement of cylinders with ε = 0.45 a) analytical (Eq. (14)) and b) numerical. 
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To verify the proposed model for parallel permeability of 
square arrays, Eq. (15), and numerical results are plotted in Fig. 
5. In addition, experimental data of Sullivan [29] and Skartsis 
et al. [30] and the numerical results reported by Sangani and 
Yao [16] are included. Figure 5 shows that the present model is 
in agreement with the experimental and the numerical data. The 
accuracy of the developed model is also compared with the 
model of Drummond and Tahir’s results [14] in Table 2. It can 
be seen that the maximum difference of the present model with 
numerical and experimental data is less than 8%. The present 
solution is compared with the analytical models of Happel [12] 
and Tamayol and Bahrami [16] in Fig. 6. As shown in Fig. 6 
and Table 2 the present model accurately predicts the numerical 
results. More importantly, the present solution enables one to 
predict the velocity distribution in the unit cell. Although the 
model of Drummond and Tahir [14] is accurate, they did not 
provide a compact relationship for the velocity distribution.  
In Fig. 7 the present model is compared with the numerical 
results and one experimental data point reported by Sullivan 
[29]. It can be seen that the model captures the numerical and 
the experimental results over the entire range of porosity. The 
present model is also depicted against analytical models of 
Happel [12] and Drummond and Tahir [14] in Fig. 8. This 
figure shows that the present model is the only one that is 
accurate over the entire range of porosity; especially, in lower 
porosities were the other models fail. To avoid misjudgments 

due to log-scale plots, the predicted values of Eq. (15) and the 
model of Drummond and Tahir [14] over the entire range of 
porosity are also listed in Table 3. It can be seen that only the 
present solution predicts numerical results within 10% accuracy 
and the model of [14] is not accurate in low porosities. 
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Figure 5: Comparison of the proposed model with the 

numerical and experimental results, square arrangement. 
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Figure 6: Comparison of the proposed model with other 

existing models, square arrangement. 
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Figure 7: Comparison of the proposed model with the 

numerical and experimental results, staggered arrangement. 
 

Table 2: Comparison between accuracy of different models for square arrangement. 

ε  
2/ dK  

Numerical 

2/ dK  Tamayol 
and Bahrami [16] 

Difference 
(%) 

2/ dK  Drummond 
and Tahir [14] 

Difference 
(%) 

2/ dK  
Present 
model 

Difference 
(%) 

0.215 0.0013 0.0010 34.8 0.0012 8.8 0.0014 8.2 
0.35 0.0038 0.0054 29.1 0.0035 10.4 0.0036 6.2 
0.45 0.0079 0.0127 37.7 0.0075 5.4 0.0075 5.4 
0.55 0.0177 0.0271 34.5 0.0165 7.3 0.0164 8.4 
0.65 0.0378 0.0565 33.1 0.0378 0.1 0.0374 1.0 
0.8 0.1667 0.1938 14.0 0.1603 4.0 0.1596 4.4 
0.9 0.6429 0.6170 4.2 0.6383 0.7 0.6368 1.0 

100
Model

numericalPresentModel
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Table 3: Comparison between accuracy of different models for staggered arrangement. 

ε  
2/ dK  

Numerical 

2/ dK  Present 
model 

Difference 
(%) 

2/ dK  Drummond 
and Tahir [14] 

Difference 
(%) 

0.094 0.000081 0.000090 10.0 0.000132 38.5 
0.3 0.0012 0.001204 2.2 0.001284 4.2 

0.45 0.0050 0.005516 9.0 0.005627 10.8 
0.55 0.0126 0.013784 8.9 0.013922 9.8 
0.65 0.0336 0.034030 1.3 0.034208 1.8 
0.8 0.1463 0.153570 4.7 0.15389 4.9 
0.9 0.6039 0.624740 3.3 0.62537 3.4 

100
Model

numericalPresentModel
Difference ×

−
=  
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The present analytical solution, present numerical results, the 
models of Drummond and Tahir [14] and Happel [12] for 
hexagonal arrangement are compared in Fig. 9. As listed in 
Table 4, the proposed relationship for permeability of 
hexagonal arrays captures numerical results within 9% 
accuracy.  
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Happel (1959)
Drummond and Tahir (1984)
Presnet Model

 
Figure 8: Comparison of the proposed model with other 

existing models, staggered arrangement. 

5 EFFECTS OF FIBER ARRANGEMENT ON 
PERMEABILITY 
Comparing the relationships for dimensionless permeability of 
various arrangements, given in Eq. (15), one can see that the 
differences are in the constants and the higher order terms. The 
higher order terms become negligible for highly porous 
structures, i.e., 0→ϕ . Therefore, it is expectable that the three 
equations lead to almost identical values in this limit. Note that 
for lower porosities, the effect of higher order terms is 
considerable and staggered arrays have the lowest permeability, 
see Fig 10. For ε  > 0.85 the difference between the two models 
is less than 5%. 
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K
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/d
2
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10-1

100

101

Happel (1959)
Drummond and Tahir (1984)
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Present numerical results

 
Figure 8: Comparison of the proposed model with other 

existing models, hexagonal arrangement. 

6 SUMMARY AND CONCLUSIONS 
Fluid flow parallel to staggered, square, hexagonal arrays of 
cylinders is studied both analytically and numerically. A 
truncated form of the series solution of Poisson’s equation 
provides accurate results for velocity distribution in the 
investigated channel-like geometries. Using the proposed 
solutions, compact models are developed for permeability of 
the media.  
Independent numerical simulations are performed to verify the 
solutions for velocity distribution and permeability. The present 
approach captures the numerical results for permeability within 
maximum 10% accuracy for the considered arrangements, 
respectively. Fiber arrangement has negligible effect on the 
pressure drop and permeability for high porosities, ε  > 0.85. 
On the other hand, for lower porosities the effect of 
microstructure is significant and staggered arrays have lower 
permeability than other arrangements. As such, use of 
hexagonal arrays of tube in heat exchangers reduces the 
consequent pressure drop. 

 
Table 4: Comparison between accuracy of different models for hexagonal arrangement. 

ε  
2/ dK  

Numerical 

2/ dK  Present 
model 

Difference 
(%) 

2/ dK  Drummond 
and Tahir [14] 

Difference 
(%) 

0.395 0.012 0.013 8.6 0.013 8.7 
0.65 0.055 0.058 6.3 0.057 4.8 
0.80 0.182 0.199 8.4 0.198 8.1 
0.90 0.654 0.716 8.6 0.715 8.5 
0.967 3.663 4.024 9.0 4.021 8.9 

100
Model

numericalPresentModel
Difference ×

−
=  
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Figure 10: Effect of arrangement on the permeability. 
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